Sparse and selective odor coding by mitral/tufted neurons in the main olfactory bulb.

نویسندگان

  • Ian G Davison
  • Lawrence C Katz
چکیده

The mammalian olfactory system recognizes an enormous variety of odorants carrying a wide range of important behavioral cues. In the main olfactory bulb (MOB), odorants are ultimately represented through the action potential activity of mitral/tufted cells (M/Ts), whose selectivity and tuning to odorant molecules are therefore fundamental determinants of MOB sensory coding. However, the sheer number and diversity of discrete olfactory stimuli has been a major barrier to comprehensively evaluating M/T selectivity. To address this issue, we assessed M/T odorant responses in anesthetized mice to a 348-odorant panel widely and systematically distributed throughout chemical space, presented both individually and in mixtures at behaviorally relevant concentrations. We found that M/T activation by odorants was markedly selective, with neurons responding robustly, sensitively, and reliably to only a highly restricted subset of stimuli. Multiple odorants activating a single neuron commonly shared clear structural similarity, but M/T tuning also frequently extended beyond obviously defined chemical categories. Cells typically responded to effective compounds presented both individually and in mixtures, although firing rates evoked by mixtures typically showed partial suppression. Response selectivity was further confirmed in awake animals by chronic recordings of M/Ts. These data indicate that individual M/Ts encode specific odorant attributes shared by only a small fraction of compounds and imply that the MOB relays the collective molecular features of an odorant stimulus through a restricted set of M/Ts, each narrowly tuned to a particular stimulus characteristic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of odor receptive field plasticity in the rat olfactory bulb and anterior piriform cortex.

Recent work in the anterior piriform cortex (aPCX) has demonstrated that cortical odor receptive fields are highly dynamic, showing rapid changes of both firing rate and temporal patterning within relatively few inhalations of an odor, despite relatively maintained, patterned input from olfactory bulb mitral/tufted cells. The present experiment examined the precision (odor-specificity) of this ...

متن کامل

Blockade of mitral/tufted cell habituation to odors by association with reward: a preliminary note.

Association of odor and reward during the early postnatal period modifies rat pup behavioral responses and olfactory bulb neural responses to subsequent presentations of that odor. Recent evidence has shown that olfactory bulb output neurons, mitral/tufted cells, receive convergent odor and reward inputs. The present report demonstrates that contiguous odor-reward pairings prevent mitral/tufted...

متن کامل

Control of Mitral/Tufted Cell Output by Selective Inhibition among Olfactory Bulb Glomeruli

Inhibition is fundamental to information processing by neural circuits. In the olfactory bulb (OB), glomeruli are the functional units for odor information coding, but inhibition among glomeruli is poorly characterized. We used two-photon calcium imaging in anesthetized and awake mice to visualize both odorant-evoked excitation and suppression in OB output neurons (mitral and tufted, MT cells)....

متن کامل

Comparison of identified mitral and tufted cells in freely breathing rats: II. Odor-evoked responses.

Mitral and tufted cells are the 2 types of output neurons of the main olfactory bulb. They are located in distinct layers, have distinct projection patterns of their dendrites and axons, and likely have distinct relationships with the intrabulbar inhibitory circuits. They could thus be functionally distinct and process different aspects of olfactory information. To examine this possibility, we ...

متن کامل

Dendritic Branching of Olfactory Bulb Mitral and Tufted Cells: Regulation by TrkB

BACKGROUND Projection neurons of mammalian olfactory bulb (OB), mitral and tufted cells, have dendrites whose morphologies are specifically differentiated for efficient odor information processing. The apical dendrite extends radially and arborizes in single glomerulus where it receives primary input from olfactory sensory neurons that express the same odor receptor. The lateral dendrites exten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 8  شماره 

صفحات  -

تاریخ انتشار 2007